TY - JOUR
T1 - A lead-free perovskite Bi1/2(Na1/4Li1/4)TiO3
T2 - investigation on structural, electrical properties, and device application
AU - Barik, Subrat Kumar
AU - Gogoi, Koustav Kashyap
AU - Sahoo, Sudarsan
AU - Kim, Hoe Joon
AU - Hajra, Sugato
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - In the present era, global challenges are focused to meet the security of energy due to excessive energy demands. The coal and petroleum-based fossil fuels are soon fading out due to current energy-generating units; hence, the energy from renewable energy sources becomes an alternative medium and new scientific investment. Research is carried out to boost the efficiency of these devices. The multifunctional materials having superior properties are the need of the hour to provide insight towards producing low-cost energy devices. A perovskite having the chemical formula Bi1/2(Na1/4Li1/4)TiO3 (BNLTO) is synthesized using a solid-state reaction. The standard techniques were used to investigate the structural and electrical characterizations at various experimental conditions. The X-ray diffraction (XRD) spectra elucidated the presence of an orthorhombic symmetry in the synthesized sample. The high dielectric constant and low loss factor is evolved at various frequencies and temperatures. The Nyquist plot depicts the association of the combined effect of grain and grain boundary. The activation energies evaluated from the loss and modulus spectrum are noted as ~ 1.26 eV and 0.81 eV, respectively. The charge carriers contribute to the conduction mechanism at high temperature. Finally, a poled piezoelectric energy harvester is fabricated to check its capabilities for the conversion of small impact from hand palm into electrical energy.
AB - In the present era, global challenges are focused to meet the security of energy due to excessive energy demands. The coal and petroleum-based fossil fuels are soon fading out due to current energy-generating units; hence, the energy from renewable energy sources becomes an alternative medium and new scientific investment. Research is carried out to boost the efficiency of these devices. The multifunctional materials having superior properties are the need of the hour to provide insight towards producing low-cost energy devices. A perovskite having the chemical formula Bi1/2(Na1/4Li1/4)TiO3 (BNLTO) is synthesized using a solid-state reaction. The standard techniques were used to investigate the structural and electrical characterizations at various experimental conditions. The X-ray diffraction (XRD) spectra elucidated the presence of an orthorhombic symmetry in the synthesized sample. The high dielectric constant and low loss factor is evolved at various frequencies and temperatures. The Nyquist plot depicts the association of the combined effect of grain and grain boundary. The activation energies evaluated from the loss and modulus spectrum are noted as ~ 1.26 eV and 0.81 eV, respectively. The charge carriers contribute to the conduction mechanism at high temperature. Finally, a poled piezoelectric energy harvester is fabricated to check its capabilities for the conversion of small impact from hand palm into electrical energy.
UR - http://www.scopus.com/inward/record.url?scp=85099922948&partnerID=8YFLogxK
U2 - 10.1007/s10854-020-05201-w
DO - 10.1007/s10854-020-05201-w
M3 - Article
AN - SCOPUS:85099922948
SN - 0957-4522
VL - 32
SP - 4629
EP - 4638
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 4
ER -