TY - JOUR
T1 - A cerebral cortex-like structured metallized elastomer for high-performance triboelectric nanogenerator
AU - Park, Moon Kyu
AU - Lee, Seokmin
AU - Ko, Yongmin
AU - Cho, Jinhan
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/11
Y1 - 2023/11
N2 - The advancement of wearable electronics, particularly triboelectric nanogenerators (TENGs), relies on the development of flexible, stretchable, and compressible electrodes that possess a large active surface area, high electrical conductivity, and excellent mechanical stability and deformability. However, existing elastomeric electrodes face challenges in meeting all of these requirements. Herein, we present a novel approach to address these limitations and create electrodes with elastomeric properties, stable metal-like electrical conductivity, and an expanded active surface area. For this goal, we perform an assembly of metal nanoparticles (NPs) in toluene and amine-functionalized organic linkers in alcohol onto the thiol-functionalized, embossed-structured elastomer. Particularly, the assembly process involves ligand exchange reaction-mediated metal NPs and subjecting them to solvent-swelling/deswelling of the embossed PDMS. This process induces the formation of cerebral cortex-like structured elastomer electrode, which is subsequently electroplated with Ni. The resulting electrodes exhibit metal-like electrical conductivity, elastomer-like flexibility, and cerebral cortex-like structure with substantially large surface area and high stress relieving properties. When combined with an intaglio-structured dielectric PDMS electrode, the device exhibits impressive TENG performance, surpassing the performance of conventional TENGs. This approach provides a basis for developing and designing a variety of high-performance flexible electronics, including TENGs.
AB - The advancement of wearable electronics, particularly triboelectric nanogenerators (TENGs), relies on the development of flexible, stretchable, and compressible electrodes that possess a large active surface area, high electrical conductivity, and excellent mechanical stability and deformability. However, existing elastomeric electrodes face challenges in meeting all of these requirements. Herein, we present a novel approach to address these limitations and create electrodes with elastomeric properties, stable metal-like electrical conductivity, and an expanded active surface area. For this goal, we perform an assembly of metal nanoparticles (NPs) in toluene and amine-functionalized organic linkers in alcohol onto the thiol-functionalized, embossed-structured elastomer. Particularly, the assembly process involves ligand exchange reaction-mediated metal NPs and subjecting them to solvent-swelling/deswelling of the embossed PDMS. This process induces the formation of cerebral cortex-like structured elastomer electrode, which is subsequently electroplated with Ni. The resulting electrodes exhibit metal-like electrical conductivity, elastomer-like flexibility, and cerebral cortex-like structure with substantially large surface area and high stress relieving properties. When combined with an intaglio-structured dielectric PDMS electrode, the device exhibits impressive TENG performance, surpassing the performance of conventional TENGs. This approach provides a basis for developing and designing a variety of high-performance flexible electronics, including TENGs.
KW - Cerebral cortex-like structure
KW - Deformable electrode
KW - Triboelectric nanogenerator
UR - http://www.scopus.com/inward/record.url?scp=85169786948&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2023.108828
DO - 10.1016/j.nanoen.2023.108828
M3 - Article
AN - SCOPUS:85169786948
SN - 2211-2855
VL - 116
JO - Nano Energy
JF - Nano Energy
M1 - 108828
ER -