A 1.4V 10.5MHz swing-boosted differential relaxation oscillator with 162.1dBc/Hz FOM and 9.86psrms period jitter in 0.18µm CMOS

Junghyup Lee, Arup George, Minkyu Je

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

52 Scopus citations

Abstract

Relaxation oscillators have a profound scope as on-chip reference clock sources or sensor front-ends in comparison to ring oscillators due to their superior frequency stability, control linearity, and wide tuning range. However, despite a better fundamental limit predicted in theory, the phase noise performance of relaxation oscillators trails behind that of ring oscillators. Furthermore, there is a huge gap between the maximum achievable 1/f2 phase noise FOM (169dBc/Hz) [1] and those achieved by recently proposed low-power relaxation oscillator implementations [1-4].

Original languageEnglish
Title of host publication2016 IEEE International Solid-State Circuits Conference, ISSCC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages106-108
Number of pages3
ISBN (Electronic)9781467394666
DOIs
StatePublished - 23 Feb 2016
Event63rd IEEE International Solid-State Circuits Conference, ISSCC 2016 - San Francisco, United States
Duration: 31 Jan 20164 Feb 2016

Publication series

NameDigest of Technical Papers - IEEE International Solid-State Circuits Conference
Volume59
ISSN (Print)0193-6530

Conference

Conference63rd IEEE International Solid-State Circuits Conference, ISSCC 2016
Country/TerritoryUnited States
CitySan Francisco
Period31/01/164/02/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'A 1.4V 10.5MHz swing-boosted differential relaxation oscillator with 162.1dBc/Hz FOM and 9.86psrms period jitter in 0.18µm CMOS'. Together they form a unique fingerprint.

Cite this