TY - GEN
T1 - A 0.076mm2 3.5GHz spread-spectrum clock generator with memoryless Newton-Raphson modulation profile in 0.13μm CMOS
AU - Hwang, Sewook
AU - Song, Minyoung
AU - Kwak, Young Ho
AU - Jung, Inhwa
AU - Kim, Chulwoo
PY - 2011
Y1 - 2011
N2 - A spread-spectrum clock generator (SSCG) is a cost-effective solution to reduce EMI, which has become a serious problem in high-speed systems. In applications such as serial links, display drivers and consumer electronics, SSCG is essential or strongly recommended. Control options such as frequency deviation (δ) and modulation frequency (fm) help to satisfy these demands. Furthermore, efficient modulation-profile generation is critical for achieving further EMI reduction and lowering fabrication cost. PLL-based SSCGs are reported in [1-3]. The ΔΣ modulator (ΔΣM) controls the division ratio [1,2] and the phase information of phase detector (PD) [3] to generate a spread-spectrum clock. The self-referenced clock generator uses a capacitor array to generate a spread-spectrum clock [7]. However, they do not have a way to control δ and fm. Dual-loop direct VCO modulation [4] and digital period synthesizer with delay-line [5] are able to control δ and fm. However, [4] requires an additional VCO, which increases the power consumption by 2x, and [5] suffers from a large deterministic jitter through the delay-line and logic circuits. A triangular profile is commonly used in many SSCGs [1,3,4]. Though the implementation of a triangular profile is very simple, its performance is poor. The chaotic PAM modulation in [2] requires complex analog circuits. Recently, a piecewise-linear profile with SRAM was presented in [5]. However, the additional memory consumes a large amount of power and occupies a large area. This paper presents a frequency-locked loop (FLL) based SSCG with frequency-to-voltage converter (FVC) [6], that saves area and provides multiple δ with low bandwidth variation. A memoryless Newton-Raphson modulation profile with multiple f m is also described.
AB - A spread-spectrum clock generator (SSCG) is a cost-effective solution to reduce EMI, which has become a serious problem in high-speed systems. In applications such as serial links, display drivers and consumer electronics, SSCG is essential or strongly recommended. Control options such as frequency deviation (δ) and modulation frequency (fm) help to satisfy these demands. Furthermore, efficient modulation-profile generation is critical for achieving further EMI reduction and lowering fabrication cost. PLL-based SSCGs are reported in [1-3]. The ΔΣ modulator (ΔΣM) controls the division ratio [1,2] and the phase information of phase detector (PD) [3] to generate a spread-spectrum clock. The self-referenced clock generator uses a capacitor array to generate a spread-spectrum clock [7]. However, they do not have a way to control δ and fm. Dual-loop direct VCO modulation [4] and digital period synthesizer with delay-line [5] are able to control δ and fm. However, [4] requires an additional VCO, which increases the power consumption by 2x, and [5] suffers from a large deterministic jitter through the delay-line and logic circuits. A triangular profile is commonly used in many SSCGs [1,3,4]. Though the implementation of a triangular profile is very simple, its performance is poor. The chaotic PAM modulation in [2] requires complex analog circuits. Recently, a piecewise-linear profile with SRAM was presented in [5]. However, the additional memory consumes a large amount of power and occupies a large area. This paper presents a frequency-locked loop (FLL) based SSCG with frequency-to-voltage converter (FVC) [6], that saves area and provides multiple δ with low bandwidth variation. A memoryless Newton-Raphson modulation profile with multiple f m is also described.
UR - http://www.scopus.com/inward/record.url?scp=79955714199&partnerID=8YFLogxK
U2 - 10.1109/ISSCC.2011.5746354
DO - 10.1109/ISSCC.2011.5746354
M3 - Conference contribution
AN - SCOPUS:79955714199
SN - 9781612843001
T3 - Digest of Technical Papers - IEEE International Solid-State Circuits Conference
SP - 360
EP - 361
BT - 2011 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, ISSCC 2011
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2011 IEEE International Solid-State Circuits Conference, ISSCC 2011
Y2 - 20 February 2011 through 24 February 2011
ER -