TY - JOUR
T1 - 3D Fabrication of Fully Iron Magnetic Microrobots
AU - Alcântara, Carlos C.J.
AU - Kim, Sangwon
AU - Lee, Sunkey
AU - Jang, Bumjin
AU - Thakolkaran, Prakash
AU - Kim, Jin Young
AU - Choi, Hongsoo
AU - Nelson, Bradley J.
AU - Pané, Salvador
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/4/18
Y1 - 2019/4/18
N2 - Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small-scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template-assisted electrodeposition in 3D-printed micromolds is presented. The 3D molds are fabricated using a modified two-photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of “conventional 3D printed helical microswimmers.” The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.
AB - Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small-scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template-assisted electrodeposition in 3D-printed micromolds is presented. The 3D molds are fabricated using a modified two-photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of “conventional 3D printed helical microswimmers.” The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.
KW - direct laser writing
KW - iron electrodeposition
KW - magnetic microrobots
KW - template-assisted deposition
KW - upstream motion
UR - http://www.scopus.com/inward/record.url?scp=85062359564&partnerID=8YFLogxK
U2 - 10.1002/smll.201805006
DO - 10.1002/smll.201805006
M3 - Article
C2 - 30829003
AN - SCOPUS:85062359564
SN - 1613-6810
VL - 15
JO - Small
JF - Small
IS - 16
M1 - 1805006
ER -